Dr. Ferenc Dalnoki-Veress

Scientist in Residence and Adjunct Professor

Dr. Ferenc Dalnoki-Veress is Scientist-in-Residence at CNS and holds an MSc and PhD in high energy physics from Carleton University, Canada. He specializes in ultra-low radioactivity background detectors and has professional experience in the field of astroparticle physics, primarily neutrino physics. He has been involved in several major discoveries in the field of neutrino physics and has worked on several international collaborations in Canada (SNO), Germany (Double Chooz at Max Planck Institute of Nuclear Physics), Italy (Borexino), and the United States. He has contributed to more than 50 articles in refereed and non-refereed journals of which 6 papers had more than 1000 citations/publication. The SNO result to which he contributed was ranked as the top three scientific breakthroughs of 2002 for Science Magazine, Discover Magazine, and the American Institute of Physics. His efforts have also contributed to the first real-time measurement of low energy solar neutrinos heralded in 2007 by Nature magazine as a “triumph for experimenters”. Note that the techniques developed in the interests of neutrino and low background physics rely on measuring extremely rare signals just as often the case in the fields of nuclear forensics, nuclear archaeology, nuclear safeguards monitoring and the detection of radioactive gases from nuclear tests. Finding a needle in a haystack is always difficult.

Science in the Public Interest                                                                     

After a rewarding career as an experimental physicist he switched fields to physics in the public service. He concluded a postdoctoral position at Princeton University’s Physics Department in 2008 and became a Professional Specialist at the Princeton Program on Science and Global Security (Woodrow Wilson School of International and Public Affairs) working on the development of particle simulations of novel detection schemes for checking the declared HEU inventories of naval-reactor cores. He joined CNS in 2009, and focused on the proliferation of fissile materials, nuclear spent fuel management, nuclear reactor safety, emergency preparedness and verification of nuclear disarmament. His work analyzing radionuclide data from the Fukushima crisis has been quoted in Nature Magazine, New Scientist, Time Magazine, and newspapers. Recently he has contributed to a blog analyzing technical developments in the negotiations between the P5+1 and Iran.

Current Courses

Dr. Dalnoki-Veress recognizes that knowledge of science is crucial for understanding weapons of mass destruction and the security threats they pose. In this sense, he has focused on courses where science and policy meet. He coordinates the course Science for NPTS (NPTG 8559) which is a required course and is taught every semester.  He also teaches a novel course titled Nuclear Treaty Verification in a Virtual World (NPTG 8612) which uses avatar based virtual reality to simulate the protocol for the verification of nuclear weapons.

Selected Publications

  • Ferenc Dalnoki-Veress, “Primarily Positive Perceptions: A Survey of Research Reactor Operators on the Benefits and Pitfalls of Converting From HEU to LEU” (paper presented at the European Research Reactor Conference, Ljubljana, Slovenia, April 1, 2014).

 

  • Dalnoki-Veress, Ferenc; Miles Pomper,. "Dealing with South Korea's Spent Fuel Challenges without Pyroprocessing." Arms Control Today. Arms Control Association. July/August 2013.

 

  • Direct Measurement of the Be-7 Solar Neutrino Flux with 192 Days of Borexino Data, C. Arpesella et al. (Borexino Collaboration). 2008. 6pp. Phys.Rev.Lett.,101:091302,2008.

 

  • A Germanium Spectrometer for Routine Characterization of Samples with the Sensitivity of Double Beta Decay Spectrometers, G. Rugel et al. Nuclear Physics B – Neutrino 2004 Proceedings Supplements, Volume 143, June 2005, Page 564, 2005.

 

  • Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory, Q.R. Ahmad et al. (The SNO Collaboration), Phys.Rev.Lett., 89, 011301, 2002.

 

  • Measurement of Day and Night Neutrino Energy Spectra at SNO and Constraints on Neutrino Mixing Parameters, Q.R. Ahmad et al. (The SNO Collaboration), Phys.Rev.Lett., 89, 011302, 2002.

 

  • Measurement of the Rate of νe + d → p + p + e − Interactions Produced by 8 B Solar Neutrinos at the Sudbury Neutrino Observator, Q.R. Ahmad et al. (The SNO Collaboration) Phys.Rev.Lett., 87, 071301, 2001.

                                                                                                                                                                         

                                                               

Course List

Courses offered in the past four years.
indicates offered in the current term
indicates offered in the upcoming term[s]

IPOL 8675 - Sem:Nuc Renaissance& Nonprolif      

This seminar introduces students to the nonproliferation and terrorism issues associated with the anticipated global spread of nuclear energy. It begins with an overview of the nuclear technologies currently being promoted under the rubric of the "nuclear renaissance," and the implications for the demand for sensitive fuel cycle services. Various policy proposals to control the proliferation and terrorism risks posed by the front end (enrichment) and back end (reprocessing) of the nuclear fuel cycle will then be examined, including the possible internationalization of fuel cycle services. The course will then turn to an examination of new technologies, such as new reprocessing techniques, new reactor types, and new fuels such as thorium, that have been proposed as ways to limit proliferation risks. Particular focus will be paid to the implications of new proposals for IAEA safeguards.

Spring 2011 - MIIS

More Information »

IPOL 8678 - Sem:VerifyingNuclearDisarmamnt      

This course is a directed study, interactive seminar course for the advanced student. Students will be required to complete several short assignments and to write a research paper on an allocated, practical aspect of the verification of nuclear arms control and to participate in a class simulation to design a verification regime for specified scenarios. The lecture component of the course will start by discussing verification approaches in general and how these have been historically applied. We will then have a series of technical lectures focusing on the technology that will allow the verification of nuclear weapons stocks, confirmation of nuclear weapons elimination, and the prohibition of weapon remanufacture and assembly. The course will finish with the presentation of students research papers to the class.

Fall 2010 - MIIS, Spring 2012 - MIIS

More Information »

NPTG 8559 / IPOL 8559 - Science & Technology for NPTS      

This course provides students with a solid foundation in scientific and technical fundamentals critical to nonproliferation and terrorism policy analysis. Such policy analyses often require strong foundational knowledge of basic scientific and technical concepts in order to understand, create, and inform policy decisions. The course begins with an introduction to science and the scientific method and then evolves into the three main areas: biological weapons, chemical weapons, nuclear weapons and relevant technologies. Topics covered in the biological component include fundamental concepts related to microorganisms, DNA, RNA, proteins, and processes of infection and disease. Topics covered in the chemistry component include fundamental concepts related to atomic structure and the periodic table, chemical structural representations, functional groups, reactivity, toxicity, as well as modern separation, purification and analytic techniques commonly used for chemical species. Applications of the fundamental concepts in the first two topics are further developed in relation to features of chemical and biological weapons and warfare, including agents, delivery methods and effects. Topics covered in the nuclear component part of the course includes radioactivity, uranium, nuclear weapons, radiation detection instrumentation and applications, environmental plumes, and various instrumentation and analysis techniques. Upon completion of this course students will have a deeper appreciation for the debate on various verification solutions that have been proposed for compliance under the Biological and Toxin Weapons Convention (BWC), Chemical Weapons Convention (CWC) and nuclear treaties.

Spring 2011 - MIIS, Fall 2011 - MIIS, Spring 2012 - MIIS, Fall 2012 - MIIS, Spring 2013 - MIIS, Fall 2013 - MIIS, Spring 2014 - MIIS, Fall 2014 - MIIS, Spring 2015 - MIIS

More Information »

NPTG 8612 - NucTreatyVerficatn/VirtualWrld      

Spring 2014 - MIIS, Spring 2015 - MIIS

More Information »

WKSH 8532 - Wks:Nuclear Weapons Technology      

This course addresses the technologies associated with the development of nuclear weapons. The course provides a basic background in the physics of nuclear weapons technology, including the fission and fusion processes, nuclear reactors, the criticality condition and the materials needed for nuclear weapons. The paths that can be taken in developing nuclear weapons are considered. The differences between radiological devices ("dirty" bombs) and critical devices are addressed. Additional topics of the workshop include radiation detection, uranium enrichment, nuclear fuel reprocessing, nuclear weapons types and weapons effects.

Fall 2010 - MIIS

More Information »

WKSH 8584 - NucSafety&SecurtyPostFukushima      

Spring 2012 - MIIS

More Information »

Faculty Program Tags