Middlebury Institute of International Studies at Monterey

Dr. Ferenc Dalnoki-Veress

Scientist in Residence and Adjunct Professor

Dr. Ferenc Dalnoki-Veress is Scientist-in-Residence at CNS and holds an MSc and PhD in high energy physics from Carleton University, Canada, specializing in ultra-low radioactivity background detectors and has professional experience in the field of astroparticle physics, primarily neutrino physics.

He has been involved in several major discoveries in the field of neutrino physics and has worked on several international collaborations in Canada, Germany, Italy, and the United States (see below) including the Sudbury Neutrino Observatory (SNO), Double Chooz and Borexino experiments. He was a member of the SNO Collaboration that won the 2015 Nobel Prize in physics. He is also a laureate along with his team of the 2016 Breakthrough Prize in Physics.

He has contributed to more than 40 articles in refereed and non-refereed journals.

Science in the Public Interest

After a rewarding career as an experimental physicist he switched fields to physics in the public service. He concluded a postdoctoral position at Princeton University’s Physics Department in 2008 and became a Professional Specialist at the Princeton Program on Science and Global Security (Woodrow Wilson School of International and Public Affairs) working on the development of particle simulations of novel detection schemes for checking the declared HEU inventories of naval-reactor cores. He joined CNS in 2009, and focused on the proliferation of fissile materials, nuclear spent fuel management, nuclear reactor safety, emergency preparedness and verification of nuclear disarmament. His work analyzing radionuclide data from the Fukushima crisis has been quoted in Nature Magazine, New Scientist, Time Magazine, and newspapers. He recently contributed to a research project analyzing technical developments in the negotiations between the P5+1 and Iran.


Nuclear Reactors, Spent Fuel, Neutrino Physics

Current Courses

Dr. Dalnoki-Veress recognizes that knowledge of science is crucial for understanding weapons of mass destruction and the security threats they pose. In this sense, he has focused on courses where science and policy meet. He coordinates the course Science for NPTS (NPTG 8559) which is a required course and is taught every semester. He also teaches a novel course titled Nuclear Treaty Verification in a Virtual World (NPTG 8612) which uses avatar based virtual reality to simulate the protocol for the verification of nuclear weapons.

Selected Publications

  • Ferenc Dalnoki-Veress, “Primarily Positive Perceptions: A Survey of Research Reactor Operators on the Benefits and Pitfalls of Converting From HEU to LEU” (paper presented at the European Research Reactor Conference, Ljubljana, Slovenia, April 1, 2014).
  • Dalnoki-Veress, Ferenc; Miles Pomper, "Dealing with South Korea's Spent Fuel Challenges without Pyroprocessing" Arms Control Today, Arms Control Association. July/August 2013
  • Direct Measurement of the Be-7 Solar Neutrino Flux with 192 Days of Borexino Data, C. Arpesella et al. (Borexino Collaboration). 2008. 6pp. Phys.Rev.Lett.,101:091302,2008
  • A Germanium Spectrometer for Routine Characterization of Samples with the Sensitivity of Double Beta Decay Spectrometers, G. Rugel et al. Nuclear Physics B – Neutrino 2004 Proceedings Supplements, Volume 143, June 2005, Page 564, 2005.
  • Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory, Q.R. Ahmad et al. (The SNO Collaboration), Phys.Rev.Lett., 89, 011301, 2002.
  • Measurement of Day and Night Neutrino Energy Spectra at SNO and Constraints on Neutrino Mixing Parameters, Q.R. Ahmad et al. (The SNO Collaboration), Phys.Rev.Lett., 89, 011302, 2002.
  • Measurement of the Rate of νe + d → p + p + e − Interactions Produced by 8 B Solar Neutrinos at the Sudbury Neutrino Observator, Q.R. Ahmad et al. (The SNO Collaboration), Phys.Rev.Lett., 87, 071301, 2001.
Course List

Courses offered in the past four years.
indicates offered in the current term
indicates offered in the upcoming term[s]

NPTG 8559 - Science & Technology for NPTS      

This course provides students with a solid foundation in scientific and technical fundamentals critical to nonproliferation and terrorism policy analysis. Such policy analyses often require strong foundational knowledge of basic scientific and technical concepts in order to understand, create, and inform policy decisions. The course begins with an introduction to science and the scientific method and then evolves into the three main areas: biological weapons, chemical weapons, nuclear weapons and relevant technologies. Topics covered in the biological component include fundamental concepts related to microorganisms, DNA, RNA, proteins, and processes of infection and disease. Topics covered in the chemistry component include fundamental concepts related to atomic structure and the periodic table, chemical structural representations, functional groups, reactivity, toxicity, as well as modern separation, purification and analytic techniques commonly used for chemical species. Applications of the fundamental concepts in the first two topics are further developed in relation to features of chemical and biological weapons and warfare, including agents, delivery methods and effects. Topics covered in the nuclear component part of the course includes radioactivity, uranium, nuclear weapons, radiation detection instrumentation and applications, environmental plumes, and various instrumentation and analysis techniques. Upon completion of this course students will have a deeper appreciation for the debate on various verification solutions that have been proposed for compliance under the Biological and Toxin Weapons Convention (BWC), Chemical Weapons Convention (CWC) and nuclear treaties.

Fall 2016 - MIIS, Spring 2017 - MIIS, Fall 2017 - MIIS, Spring 2018 - MIIS

More Information »

NPTG 8565 - Missiles and Missile Defense      

This course is divided into two components. The first is an introduction to ballistic missiles including discussions about why missiles matter and the history of their development, rocket components, propulsion, steering, guidance, structure, launchers, trajectories and cruise missiles. Then we will start to apply what we have learned to understand the current status of ballistic missile defense. How difficult is it to hit a bullet with a bullet? We will discuss defense-in-depth and layered defense, defended footprint and radars, boost-phase, mid-course and terminal-phase intercepts, discrimination of warheads and decoys, missile defense effectiveness modelling and evaluating testing, drone-based and space-based missile defense, and cost and status of programs around the world. It is recommended that students will have taken the Science for Nonproliferation and Terrorism Studies course but a handout will be given before the course starts as a refresher of the main concepts. This will be a pass/fail course.

Spring 2018 - MIIS, MIIS Workshop

More Information »

Faculty Program Tags